Ca2+-dependent changes in cyclic GMP levels are not correlated with opening and closing of the light-dependent permeability of toad photoreceptors
نویسندگان
چکیده
We have measured the levels of 3',5'-guanosine monophosphate (cyclic GMP) in isolated retinas from toad to investigate their correlation to the opening and closing of the light-dependent permeability of photoreceptors. When Ca2+-induced changes in cyclic GMP concentration are compared with the Ca2+-induced changes in the permeability of photoreceptor light-dependent channel, four quantitative dissimilarities are noted. First, when extracellular Ca2+ ([Ca2+]o) is reduced from normal physiological levels to between 10(-6) and 10(-7) M, the light-dependent permeability is increased, but cyclic GMP levels are not significantly changed. Second, when [Ca2+]o is increased from 1.8 to 20 mM, the light-dependent permeability is suppressed, but cyclic GMP levels are decreased by only 10-15%, about one-quarter the decrease that can be obtained with bright illumination. Third, when [Ca2+]o is increased from 10(-8) M to 20 mM, the light-dependent permeability is closed rapidly, but the cyclic GMP decrease is slow. Fourth, when [Ca2+]o is lowered to 10(-8) M, the sensitivity of the light-dependent permeability to steady illumination is decreased by three to four orders of magnitude, but the sensitivity of the light-dependent decrease in cyclic GMP is not significantly affected. These observations indicate that there is no simple correlation between cyclic GMP levels and the permeability of the light-dependent channels and that Ca2+ can affect the conductance in the absence of changes in cyclic GMP content.
منابع مشابه
In Intact Mammalian Photoreceptors, Ca2+-dependent Modulation of cGMP-gated Ion Channels Is Detectable in Cones but Not in Rods
In the mammalian retina, cone photoreceptors efficiently adapt to changing background light intensity and, therefore, are able to signal small differences in luminance between objects and backgrounds, even when the absolute intensity of the background changes over five to six orders of magnitude. Mammalian rod photoreceptors, in contrast, adapt very little and only at intensities that nearly sa...
متن کاملLight - dependent Ion Influx into Toad Photoreceptors
To measure the influx of Na' and other ions through the lightdependent permeability of photoreceptors, we superfused the isolated retina of the toad, Bufo marinus, with a low-Ca2+ (10-8 M), low-ClRinger's solution containing 0.5 mM ouabain . Under these conditions, the membrane potential of the rod is near zero and there is no light-induced potential change either in the rod or in more proximal...
متن کاملActivity-dependent modulation of rod photoreceptor cyclic nucleotide-gated channels mediated by phosphorylation of a specific tyrosine residue.
Cyclic nucleotide-gated (CNG) channels are crucial for phototransduction in vertebrate rod photoreceptors. The cGMP sensitivity of these channels is modulated by diffusible intracellular messengers, including Ca2+/calmodulin, contributing to negative feedback during sensory adaptation. Membrane-associated protein tyrosine kinases and phosphatases also modulate rod CNG channels, but whether this...
متن کاملLight-dependent ion influx into toad photoreceptors
To measure the influx of Na+ and other ions through the light-dependent permeability of photoreceptors, we superfused the isolated retina of the toad, Bufo marinus, with a low-Ca2+ (10(-8) M), low-Cl- Ringer's solution containing 0.5 mM ouabain. Under these conditions, the membrane potential of the rod is near zero and there is no light-induced potential change either in the rod or in more prox...
متن کاملThe crystal structure of GCAP3 suggests molecular mechanism of GCAP-linked cone dystrophies.
Absorption of light by visual pigments initiates the phototransduction pathway that results in degradation of the intracellular pool of cyclic-GMP (cGMP). This hydrolysis promotes the closing of cGMP-gated cation channels and consequent hyperpolarization of rod and cone photoreceptor cell membranes. Guanylate cyclase-activating proteins (GCAPs) are a family of proteins that regulate retinal gua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 80 شماره
صفحات -
تاریخ انتشار 1982